
 Computer Graphics

 Lecture 8

Line Drawing Algorithms

DDA Algorithm: The digital differential analyzer (DDA) is a scan-conversion
line algorithm based on calculating either ∆y or ∆x using equations

 ∆y = m ∆x

 ∆x = ∆y / m
Note: These two equations we derived in the last lecture. Check lecture 7
notes for these two equations.

We sample the line at unit intervals in one coordinate and determine
corresponding integer values nearest the line path for the other
coordinate.

Consider first a line with positive slope, as shown in Fig. 8-1. If the slope is
less than or equal to 1, we sample at unit x intervals (∆x = 1) and compute
each successive y value as

 Fig 8-1

 yk+1 = yk + m (2.6)

Subscript k takes integer values starting from 1, for the first point, and
increases by 1 until the final endpoint is reached. Since m can be any real
number between 0 and 1, the calculated y values must be rounded to the
nearest integer.
For lines with a positive slope greater than 1, we reverse the roles of x and
y. That is, we sample at unit y intervals (∆y = 1) and calculate each
succeeding x value as

 xk+1 = xk + (1/m) (2.7)

Equations 2.6 and 2.7 are based on the assumption that lines are to be
processed from the left endpoint to the right endpoint (Fig. 8-1). If this
processing is reversed, so that the starting endpoint is at the right, then
either we have ∆x = -1 and

 yk+1 = yk – m (2.8)

or (when the slope is greater than I) we have ∆y = -1 with

 xk+1 = xk – (1/m) (2.9)
Equations 2.6 through 2.9 can also be used to calculate pixel positions
along a line with negative slope. If the absolute value of the slope is less
than 1 and the start endpoint is at the left, we set ∆x = 1 and calculate y
values with Eq. 2.6

When the start endpoint is at the right (for the same slope), we set
∆x = -1 and obtain y positions from Eq. 2.8. Similarly, when the absolute
value of a negative slope is water than 1, we use Ay = -1 and Eq. 2.9 or we
use ∆y = 1 and Eq. 2.7.

The DDA algorithm is a faster method for calculating pixel positions than
the direct use of Eq. 2.1(refer Lecture 7 notes). It eliminates the
multiplication in Eq. 2.1 by making use of raster characteristics, so that
appropriate increments are applied in the x or y direction to step to pixel
positions along the line path. The accumulation of round-off error in
successive additions of the floating-point increment, however, can cause
the calculated pixel positions to drift away from the true line path for long
line segments. Furthermore, the rounding operations and floating-point
arithmetic in procedure line DDA are still time-consuming. We can improve
the performance of the DDA algorithm by separating the increments m and
l / m into integer and fractional parts so that all calculations are reduced to
integer operations. A method for calculating l / m increments in integer
steps will be discussed in future lectures.

